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The problem of the symmetric instability of the steady-state motions of an incompressible ideal liquid which is stratified with 
respect to its density is investigated in the case of two types of motion, axially symmetric and with translational symmetry. It is 
shown that the sufficient condition for stability obtained in [1] using a variational method (the direct Lyapunov method) for the 
motions under consideration is closely related to the extremal nature of their energy; stable motions are characterized by a 
conditional minimum of the energy. A minimum of the energy holds in the class of states for which a potential vortex, expressed 
in terms of the Lagrangian invariants, angular momentum and density, is represented by the same function of these invariants. 
Conditions for instability arc formulated and estimates of the increase in the kinetic energy of perturbations are given. © 1999 
Elsevier Science Ltd. Al l  rights reserved. 

1. Consider the axially symmetric motion of an ideal liquid, which is stratified with respect to its density, 
in the incompressibility approximation. The system of dynamic equations in a cylindrical system of 
coordinates (r, % z) with a vertical z-axis has the form 

d. M 2 1 aw 
dt 7 -= p ~r' dt p ~z 

dM=o,  d p _  l~ru  ~gw 
at ¥ - o ,  7- -r 

(1.1) 

Here M = r o  is the angular momentum, u, w, t~ are the radial, vertical and azimuthal components 
of the velocity, p is the density, p is the pressure and g is the acceleration due to gravity. The liquid 
occupies the cylindrical domain: 0 ~ r ~< R, 0 ~< z ~< H, on the boundaries of which the normal component 
of the velocity vanishes. We shall assume that the Jacobian D(M, p)/D(r, z) does not identically vanish 
anywhere in the above domain. The steady state (the cyclostrophie balance), which is denoted by the 
subscript s, is then described by the equations 

g 2 
u., % = 0; ~ - 3p" 

= Ps - ~ "  - Dr 

_ 3Ps 
-gPs - '~Z 

(1.2) 

A sufficient condition for the symmetric stability of this state, obtained by the direct Lyapunov method 
[1], is formulated in the following manner: if the inequalities 

~Ps < O, D(Ms2,ps)/D(r, z) < 0 
~gz 

are satisfied over the whole of the flow domain then the state (1.2) is stable in a Lyapunov sense in theelass 
of axially symmetric perturbations. This condition can be written, using Eqs (1.2), in the equivalent form 

~2Ps >0, ~2p, ~2p.,._(~2p,~ 2 
~z 2 ~a ~ ~z 2 t aaaz) >0 (1 .3 )  

where a = r -2. 
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The physical meaning of this condition consists of the fact that the energy is a minimum in the steady 
state. 

We shall now refine and substantiate what has been said above. We denote pM 2 by ix. It is clear that 
is a Lagrangian invariant: d ~ d t  = 0. Furthermore, the expression f~ = r-lD(la, p)/D(r, z) is also a 

Lagrangian invariant (in the appropriate variables, it is proportional to the Ertel potential vortex). 
It is fairly obvious that, on account of the two-dimensional nature of the dynamics, a functional relation 

of the type f~ = F(~t, p) must exist, at least locally (this has been called [2] a functional invariant). If 
the Jacobian D(tx, p)/D(r, z) does not vanish over the whole of the flow domain, this relation also exists 
globally. In this case, the set of all states of axially symmetric motion which is characterized by the 
collection (u, w, IX, p) naturally decomposes into equivalence classes: identical functional invariants 
correspond to equivalent states. In particular, orbits (that is, states associated with the dynamics) consist 
of equivalent states. 

The assertion mentioned above is formulated as follows: when the stability condition (1.3) is satisfied, 
the energy of the steady state has an absolute minimum in the class of equivalent states. 

The assertion mentioned above is formulated as follows: when the stability condition (1.3) is satisfied, 
the energy of the steady state has an absolute minimum in the class of equivalent states. 

We will now indicate how this is proved. Using the coordinates a = r -2, z and the function Ps, we 
define the Legendre transformation 

a = 3pfOa, [1 = 3pJBz (1.4) 

The functionps which is dual to d)(a, 13) = ca + 13z - P s  has the derivatives: Od~/aa = a; ~d~/~13 = z 
when (a, 13) = (-~ts/2, gPs) by virtue of (1.4) and (1.2), and also satisfies inequalities which are similar 
to (1.3) 

3!3 > 0, 3 ~  3 ~  > 0 (1.5) 
~a 2 3a 2 3135 

since it is a property of a Legendre transformation that convexity is preserved. The inequality 

~) - ~ - ' ~ ,  - gPs ) - (a  + - ~ ) a  - (~ + gPs )z > 0 (1. 6) 

when (a, 13) ~ (-~/2, gPs), follows from this. 
Actually, the expression on the left-hand side, as a function of a, 13, vanishes together with its first 

derivatives when (a, 13) -- (-~ts/2, gPs), and we establish inequality (1.6) when account is taken of the 
convexity of dp(a, 13). 

The difference in the energies of a certain state (u, w, ix, p) and the steady state (0, 0, its, Ps), which 
is equivalent to it, can be represented in the form 

R H r 2 2 
AE=2~JrdrSdz lPU-  +pw- 4 (~t-~ts)a I-(p-ps)gz+ 

o o L 2 2 2 

The integral of the expression in the braces vanishes, which is proved by representing it in the form 
of a difference of integrals and making the change of integration variables (r, z) ~ (ix, p), (r, z) 
(~ts, Ps), taking into account the same expression for the Jacobians which follows from the definition of 
equivalence. 

Using inequality (1.6), we conclude that AE > 0 when (u, w, ~t, p) ;~ (0, 0, ~,  Ps), which it was required 
to prove. 

2, Suppose that at least one of the conditions 

02P" <0, - <0 
t - - TzJ (2.1) 

holds in a certain domain. 
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We shall show that the steady state is then unstable. In order to do this, as is well known, it is sufficient 
to demonstrate the instability of the dynamic equations in the neighbourhood of the steady state [3]. 
As noted in [4], it is convenient to use the Lagrange approach here. The linearized displacement field 
~(r, z, t), rl(r, z, t) is defined by the relations 

t 

= ~o (r, z) + ~ u(r, z, t ')dt'  (2.2) 
0 

t 

= rlo(r,z)+ ~ w(r,z,t ')dt" 
0 

and satisfies the linearized incompressibility equation 

and, also, the boundary conditions 

7 - °  

~(R, z) = rl(r, 0) = ~(r, H) = 0. 

It is assumed that the initial displacements ~0, 110 also satisfy these conditions. We shall confine 
ourselves to variations in Ix and p, which are defined by the equalities 

8P = - ( ~ r  +~I~z/P, 

It can be shown that the perturbations IX' = Ixs + fix, 9' = 9s + 613 are equivalent (in the linear 
approximation) to the steady state. Physically, such a perturbation at the initial instant of time is obtained 
by the displacement of the particles from their equilibrium positions while preserving the elementary 
volumes and the corresponding values of Ps and )as. 

The linearized system (1.1) in the variables ~, 11 reduces to the form 

3r 

psi~ +~B+rlC = -  ~p' (2.4) 
bz 

(a=l~r 3 0$tSDr ' "=-'~rs = ~' C = -g~zS ) 

where p '  are the pressure perturbations. 
Conditions (2.1) mean that the matrix 

has at least a single negative eigenvalue. 

II a F =  B 

System (2.4) has a quadratic energy integral E = T + U, where 

R H . r = I-_ lrarNw,(  2 + fi2) 
2 0  0 

R H 
U = I I rdrldr.(~ 2A + 2{riB + rl2C) 

20 0 

(2.6) 

It can be shown (see the Appendix) that, when at least one of conditions (2.1) is satisfied, there is 
an initial displacement field to which a negative value of U corresponds. 

To prove instability we use the functional [4] 
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R H 
W = 1 JdrrJ akp~(~2 +112) 

t'O 0 
(2.7) 

Its time derivative satisfies the inequality W 2 ~-~ 4TW (wh.ich is proved using the Cauchy-Bunyakovskii 
inequality).It follows from the equation of motion that W= 4T - 2E. From these relations, we obtain 
the inequality 

>- (2.8) 
W 

We select the initial displacement field (~0, rl0) such that it corresponds to U(0) < 0 and put 
the velocities ~(0), 11(0 ) equal to ×'(~0, rl0), where we select the constant × > 0 from the condition 
th.at E = 0. From this, we obtain that × -- (I U(0)I/W(O)) vz. In this case, it is obvious that the equality 
W(0) = 2×W(0) is satisfied. For the given initial condition, we obtain the estimates 

E > 2x; W(t) > W(0)exp(2xt) 
W 

from inequality (2.8). 
The value of the constant × obviously defines the lower boundary of the increment in the growth of 

the perturbations. 
Correspondingly, for the kinetic energy, we have the estimate 

T > W(V¢I W) 2 14 > x2W(t) (2.9) 

We therefore obtain an exponential estimate of the growth in the kinetic energy of a perturbation. 
On the basis of the foregoing discussion it can be shown that, in the final analysis, instability of the 
steady state is due to the existence of equivalent perturbations with energy values which are smaller 
than in the case of the steady state. States which correspond to perturbations (2.3) with a displacement 
field for which U(0) < 0 and T(0) = 0 are examples of such states. 

3. The issue on the instability of a steady state of the geostrophic balance, for which the pressure 
gradient is balanced by the Coriolis force [5], can be investigated in a similar manner. Most frequently, 
a model of the flow in which the fields are independent of one of the horizontal coordinates is used. 
Suppose that this is the y axis. Then, the dynamic equations in a Cartesian system of coordinates can 
be written in the form [5] 

dux dw l 
T pox - g  

T " - f "  =o (3.1) 

dux ( d_. . 
dt =T+.x  +WTz 

where ux, uy are the components of the velocity along the x and y axes, and f is the Coriolis parameter. 
The third equation of (3.1) means that the quantity m = Uy + fx is a Lagrangian invariant: dm/dt = O. 
This so-called geostrophic momentum is, to a known extent, analogous to the angular momentum M. 
Motion is considered in the domain 0 ~< x <~ l, 0 ~< z ~< H, on the boundaries of which the normal 
component of the velocity vanishes. We assume that the Jacobian D(m, p)/D(x, z) is not identically equal 
to zero. In this case, the steady state (the geostrophic balance) satisfies the equations 

ap., 
w., = 0, u~ = 0, ~ = -gPs 

(3.2) 
~P" = f (m ,  -.f'x)ps ~x 

A sufficient condition for the symmetric stability of state (3.2) is the following condition [1]: when 
the conditions 
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39s < 0, fD(m,,p.~) < 0 (3.3) 
Oz D(x,z) 

are satisfied, state (3.2) is stable in the Lyapunov sense in the class of symmetric (independent of y) 
perturbations. By making the change of coordinates (x, z) ---) (x, q), where q = z + f2xZ/2g, and using 
the steady-state equations, we can represent the stability conditions in the form 

a' . ,  >o, >0 ~Z 2 3x 2 ~q2 ~ ~x~q ) (3.4) 

which indicates the convexity ofps as functions of (x, q). 
Next, instead of m, we use the Lagrangian invariant ~ = pm. As in the preceding case, it can be 

shown that a functional relation of the form 

D(l~g,p) _ 
D(x, z) - F(ILt~' p) 

exists, which is explicitly independent of time if ~ and P are Lagrangian invariants (a functional invariant 
[2]). 

The assertion regarding the minimum energy of the steady state holds: when the stability conditions 
are satisfied, the energy of the steady state has the absolute minimum among states with the specified 
functional invariant (an energy which is calculated per unit length ofy is implied here). The proof uses 
a Legendre transformation with the function ps(x, q) and is identical with the preceding proof. 

Conditions of instability are formulated in the following way: if, in a certain domain, at least one of 
inequalities (3.4) changes sign, the state of the eyclostrophic balance is unstable. 

The proof is carried out using the scheme employed in the previous ease. As before, the instability 
of the steady state is due to the existence of equivalent states with a lower value of the energy. 

4.Appendix. We will now outline a scheme for proving the assertion: if the matrix (2.5) with continuous 
coefficients has a negative eigenvalue in a certain domain, then a displacement field ~0, rl0 exists, which 
satisfies the equation of continuity, for which U(0) < 0. We select a point (r., z.) in this domain with a 
certain e-neighbourhood which is sufficiently small so that A, B and C only change slightly in it. 

We put 

1 ~¥o 1 ~ l | t  
no) = (± 

r ~ ~ r O r  

and choose the function V0 in the form of a Gaussian distribution with its centre at (r., z.) and 
positive definite covariant matrix ~ with elements Crik -- e 2. Asymptotically, it is possible to obtain: 
U(0) = GSp(F~)(1 + o(1)), where G > 0. It is also possible to write: U(0)^- G(),la'll + ~.2¢r~2, where 
~.i is an eigenvalue of the matrix F of (2.5), ~' = D~D -1 and the matrix D reduces (2.5) to diagonal 
form. Suppose, for example, that ~.1 < 0. On choosing a covariant matrix which satisfies the conditions 
cr'xl I ~.11 > ~2cr~2, we obtain the required assertion. 
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